CORNEAL TOPOGRAPHY

Corneal topography is a very useful and effective tool in determining irregular corneas and different cone shapes and sizes. The images below represent typical cones and irregular corneas encountered in a practice along with the recommended Rose K2 lens design for optimal fit.

<table>
<thead>
<tr>
<th>Cone Shape</th>
<th>Recommended Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nipple Cone</td>
<td>Rose K2 IC</td>
</tr>
<tr>
<td>Large Oval Cone</td>
<td>Rose K2 Post Graft</td>
</tr>
<tr>
<td>Pellucid Marginal Degeneration</td>
<td>Rose K2 IC</td>
</tr>
<tr>
<td>Keratoglobus</td>
<td>Rose K2 Post Graft</td>
</tr>
<tr>
<td>LASIK-Induced Ectasia</td>
<td>Rose K2 Post Graft</td>
</tr>
</tbody>
</table>

Rose K2 Designs

- Rose K2
- Rose K2 IC
- Rose K2 Post Graft

Rose K2 IC

- **Optimum fit immediately after blink.**
- Optimum fit a few seconds after blink.

Rose K2 Post Graft

- **Optimum fit on PMD.**
- Proper central touch and edge lift.
- 11.4 diameter lens on PMD. Proper central touch and edge lift.

Rose K2

- **Optimum fit unnecessarily after blink.**
- Optimum fit in this demanding situation.

Fitting Guide

- **Residual Astigmatism (RA)**
 - It is usual to have low amounts of RA, accented or, in corneal topography, a variable front surface.
 - 1.25 in this demanding situation.
- **Peripheral Fit**
 - Proper central touch, insufficient lift.
 - Proper central touch, excessive lift at the edge.
 - Central fit, excessive edge lift.
 - Central fit, too much edge lift.
 - Steep centrally-good fit peripherally.
 - Central fit, tight periphery. Early Graft -steep centrally, loose peripherally.

Systematic Approach to Fitting

Generality

- Toric peripheral curves and Asymmetric Corneal Technology (ACT) are available on all lens designs.

Topical corneal anesthetic

- Recommended for new fits to reduce tearing for more accurate fitting assessment.

The use of diagnostic lenses

- Is the only way to properly assess the correct fit and final lens power.

Curve Selection

- **Peripheral Fit**
 - Assess the diameter.
 - ROC average K reading.

Indications

- Rose K2 / Rose K2 IC
- Rose K2 Post Graft
- For patients who have undergone penetrating keratoplasty.

Central Fit

- Ignore peripheral fit at this stage.
- Evaluate central fit immediately after blink when lens is centered.

Peripheral Fit

- Once good central fit is achieved, access edge tight. Look for an even fluorescein band of 0.2mm to 0.3mm in width. Order increased (flat) or decreased (steep) edge fit accordingly. For asymmetric edge lift where the lift is excessive at 3 o’clock and insufficient at 9 o’clock, consider ROS, (SP design). For significant edge lift, add -0.25D at 9 or 3 o’clock, consider K2.

Assess the Diameter

- The standard diameter is 8.7mm. Superior diameters (9.0mm) are used on very steep high cones.
- A larger diameter is often required for early cones and will also tend to make the lens ride higher axially on the top lid and be well clear of the lower limbus.

Assess Power Last

- Perform over-refraction in well-lit room. Over-refract using ±1.00D steps initially and refine with 0.25D and 0.50D steps.

Contact Information

- Tel: +4 4 (0)1604 646216 Fax: +4 4 (0)1604 790366 Email: enquiries@davidthomas.com Web: www.davidthomas.com

Oval Keratoconus

- 0.50D flatter in more mature grafts.

Nipple Keratoconus

- Increasing the diameter will help lens backouchonisation.

Ectasia and Post Graft

- 10.4mm. Increasing the diameter will help lens backouchonisation.
- Makes sure the lens is not impinging onto the upper cornea.

K2 IC

- Rose K2 +0.25D on ROS, steep centre.
- Rose K2 IC +0.25D on ROS, steep centre.

Rose K2 Post Graft

- Rose K2 IC +0.25D on ROS, steep centre.
- Rose K2 Post Graft +0.25D on ROS, steep centre.
Three lens designs... to fit all corneal shapes...
One simple systematic approach to fitting

FEATUREING
Easy-to-fit using a simple systematic approach for all designs.
Simply to use flexible edge lift system.
Aberration control aspheric optics providing outstanding acuity reduced flare and glare and minimum lens marks.
(Rose K2, Rose K2 IC, Rose K2 Post Graft).

Advanced fitting options including:
- Toric peripheral curves
- Asymmetric Corneal Technology ACT
- Front, back and bi-toric design

Available extensive diameter and base curve range.
Extensive diameter and base curve range.
Fits all corneal shapes, sizes and stages of keratoconus because of the unique design that change as the base curve steepens.

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The final lens is optically compensated (three curve and power, no calculations are required), so the change in edge lift value allows the optical height to not affect the contact fit. With Rose K2 lenses, 85% of all lenses designed use the either the standard, edge lift value (decreased) or standard steep (decreased) edge lift to achieve the desired peripheral fit. However, other edge lift values can be specified in 0.1 increments ranging from +5.0 (standard) to +5.0 (increased) (see illustration D1). With Rose K2 IC and Rose K2 Post Graft lenses, the flexible edge lift system is available in 3 different values, standard, standard steep (increased), standard flat or standard flat edge lift (see illustration E).

• Front, back and bi-toric design
• Toric peripheral curves
• Asymmetric Corneal Technology ACT

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The final lens is optically compensated (three curve and power, no calculations are required), so the change in edge lift value allows the optical height to not affect the contact fit. With Rose K2 lenses, 85% of all lenses designed use the either the standard, edge lift value (decreased) or standard steep (decreased) edge lift to achieve the desired peripheral fit. However, other edge lift values can be specified in 0.1 increments ranging from +5.0 (standard) to +5.0 (increased) (see illustration D1).

With Rose K2 IC and Rose K2 Post Graft lenses, the flexible edge lift system is available in 3 different values, standard, standard steep (increased), standard flat or standard flat edge lift (see illustration E).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The final lens is optically compensated (three curve and power, no calculations are required), so the change in edge lift value allows the optical height to not affect the contact fit. With Rose K2 lenses, 85% of all lenses designed use the either the standard, edge lift value (decreased) or standard steep (decreased) edge lift to achieve the desired peripheral fit. However, other edge lift values can be specified in 0.1 increments ranging from +5.0 (standard) to +5.0 (increased) (see illustration D1).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The final lens is optically compensated (three curve and power, no calculations are required), so the change in edge lift value allows the optical height to not affect the contact fit. With Rose K2 lenses, 85% of all lenses designed use the either the standard, edge lift value (decreased) or standard steep (decreased) edge lift to achieve the desired peripheral fit. However, other edge lift values can be specified in 0.1 increments ranging from +5.0 (standard) to +5.0 (increased) (see illustration D1).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).

The peripheral R is the single most important fitting factor for a successful, comfortable GP lens. Rather than a complicated series of radii and diameters, all Rose K2 designs use a single value referred to as Edge Lift and allows the optimised peripheral configuration. As the final lens, an edge lift value referred to as standard, increased lift (or decreased lift) can be enbeded (see illustrations B, C, D).